Lorentz estimates for asymptotically regular fully nonlinear parabolic equations
نویسندگان
چکیده
منابع مشابه
Lorentz Estimates for Asymptotically Regular Fully Nonlinear Elliptic Equations
We prove a global Lorentz estimate of the Hessian of strong solutions to a class of asymptotically regular fully nonlinear elliptic equations over a C1,1 smooth bounded domain. Here, the approach of the main proof is based on the Possion’s transform from an asymptotically regular elliptic equation to the regular one.
متن کاملOn Estimates for Fully Nonlinear Parabolic Equations on Riemannian Manifolds
In this paper we present some new ideas to derive a priori second order estiamtes for a wide class of fully nonlinear parabolic equations. Our methods, which produce new existence results for the initial-boundary value problems in R n , are powerful enough to work in general Riemannian manifolds. Mathematical Subject Classification (2010): 35K10, 35K55, 58J35, 35B45.
متن کاملIntroduction to fully nonlinear parabolic equations
These notes contain a short exposition of selected results about parabolic equations: Schauder estimates for linear parabolic equations with Hölder coefficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations. MSC. 35K55, 35D40, ...
متن کاملMaximum Norm Error Estimates for Difference Schemes for Fully Nonlinear Parabolic Equations
This article establishes error bounds for finite difference schemes for fully nonlinear parabolic Partial Differential Equations (PDEs). For classical solutions the global error is bounded by a known constant times the truncation error of the exact solution. As a corollary, this gives a convergence rate of 1 or 2 for first or second order accurate schemes, respectively. Our results also apply f...
متن کاملContinuous Dependence Estimates for Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Equations
Using the maximum principle for semicontinuous functions (Differential Integral Equations 3 (1990), 1001–1014; Bull. Amer. Math. Soc. (N.S) 27 (1992), 1–67), we establish a general ‘‘continuous dependence on the nonlinearities’’ estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with timeand space-dependent nonlinearities. Our result generalizes a result by Souga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2017
ISSN: 0025-584X
DOI: 10.1002/mana.201600497